

Accelerator Magnet Design

Soren Prestemon
Lawrence Berkeley National Laboratory

References - Acknowledgments

- USPAS course "Superconducting Accelerator Magnets", Ezio Todesco, Paolo Ferracin, Soren Prestemon
- USPAS Course "Magnetic Systems: Insertion Devices", Ross Schlueter

Outline

- The magnets of an accelerator
- Some magnetics fundamentals
- Review of magnetic multipoles
 - Definition: Taylor series
 - Inverse problem: how to create multipole fields
 - Iron-dominated (scalar potential)
 - Biot-Savart
- Design and fabrication issues with real accelerator magnets

Layout of an accelerator

- Magnets play key role:
 - Kick beam into accelerator during injection: Kicker magnets
 - Align injected beam with stored beam: Septum magnets
 - Bend beam in circle: bend magnets (dipoles)
 - Focus beam to allow storage (quadrupoles)
 - Compensate for electron energy variation (sextupoles)

Additional magnet systems

Correctors

- Dipoles for field trajectory correction
- Can be "slow": compensate static or slow-varying drifts
- Can be fast: allow fast feedback for beam control

Chicanes

- Versions of corrector magnets (not used for beam feedback)
- Used to provide mild steering of beam, e.g. in straights, or for dispersion
- Light-source Wigglers and undulators
 - Used in to produce synchrotron radiation of particular quality
 - Ideally are transparent to beam storage

Examples of Accelerator Magnets

- Dipoles Steering
- Quadrupoles focusing
- Sextupoles chromaticity

- These components are analogous to optical elements, e.g. mirrors
 - Charged-particle optics

Simplest dipole: windowframe

- Assume μ=∞; field in center is uniform
- Field across coil is linear
- What happens if μ is finite?
- What happens at the ends?

Another "simple" geometry

- Constant J in ellipse => J=0 in intersecting zone
 - Field in center is uniform => perfect dipole
 - This is the motivation for standard " $Cos(\theta)$ " dipoles

Intersecting ellipses

A practical (?) winding with flat cables

Transitioning from theory to practice

- Coil is made from a wire/cable => J~constant
 - Discretize $Cos(\theta)$ distribution using wedges
 - Ends must allow beam-passage
 - These "details" introduce errors in the form of harmonic content

A practical winding with one layer and wedges [from M. N. Wilson, pg. 33]

A practical winding with three layers and no wedges [from M. N. Wilson, pg. 33]

Artist view of a cosθ magnet [from Schmuser]

Some classic configurations

- These configurations are often mentioned in the literature
 - Combined-function magnets can take a variety of forms
 - Scalar potential can define combination of fields
 - Scalar potential can be defined for "dominant" multipole of interest – other multipoles are then added via additional energization

Review: Maxwell

Ampere

$$\nabla \times \vec{H} = \vec{J}$$

Faraday

$$\nabla \times \vec{E} = \vec{B}$$

$$\nabla \cdot \vec{B} = 0$$

$$\oint \vec{H} \cdot d\vec{s} = \int \vec{J} \cdot d\vec{a}$$

$$\oint \vec{E} \cdot d\vec{s} = -\int \dot{\vec{B}} \cdot d\vec{a}$$

No magnetic monopoles

$$\vec{B} = \mu \mu_0 \vec{H}, \quad \mu_0 = 4\pi 10^{-7} \frac{\text{V s}}{\text{A m}}$$

Continuity across interfaces implies:

$$\nabla \cdot \vec{B} = 0 \implies \Delta B_{\perp} = 0$$

$$\nabla \times \vec{H} = 0 \implies \Delta H_{||} = 0$$

Allowed multipoles

$$F \equiv A + iV \tag{3}$$

It follows directly from Eqns. (2) and (3) that the complex conjugate $B^*(z)$ of the field is analytic in z and is given by:

$$B^{*}(z) = i\frac{dF}{dz} \tag{4}$$

It is convenient to expand the complex $\mathcal{K}_{\mathcal{A}}$ potential F in a power series about a point (say z=0) and analyze the 'harmonic' components:

$$F(z) = \sum_{n=1}^{\infty} \left(\frac{z}{r_p}\right)^n c_n \; ; \qquad B^{\bullet}(z) = i \sum_{n=1}^{\infty} \left(\frac{z}{r_p}\right)^{n-1} \frac{nc_n}{r_p} \tag{5}$$

where r_p is the magnet aperture radius (\longrightarrow half gap h for a dipole). For magnets exhibiting midplane symmetry, the coefficients $c_n \equiv a_n + ib_n$ are pure real (or pure imaginary if A, rather than V, is constant along the midplane). For symmetric multipole magnets (i.e. rotatable by $360^o/2m$ with a change of polarity), of order m (e.g. m=1 for dipole, 2 for quadrupole, etc.) the complex potential F and flux density $B^*(z)$ are

$$F(z) = \sum_{n=1}^{\infty} \left(\frac{z}{r_p}\right)^{m(2n-1)} a_{m(2n-1)}; \quad B^{\bullet}(z) = i \sum_{n=1}^{\infty} \left(\frac{z}{r_p}\right)^{m(2n-1)-1} \frac{m(2n-1)a_{m(2n-1)}}{r_p}$$
(6)

Multipole fields

• Potential isosurfaces, m=1, 2, 3, 4

Some comments

• The series expansion is only valid out to the minimum radius r_s of any potential surface

- Non-dimensionalization by r_s is often replaced by R_{ref} , a convenient measurement radius
- The coefficients beyond B_m (the dominant mode) are then often normalized by $10^{-4}B_m$
 - resulting terms are said to be in "units"

FIELD HARMONICS OF A CURRENT LINE

Field given by a current line (Biot-Savart law)

$$B^*(z) = \frac{\mu_0 I}{2\pi i} \frac{1}{z - z_0}$$

$$\Longrightarrow F(z) = -\frac{\mu_0 I}{2\pi} Ln(z - z_0)$$

Or, in terms of multipoles:

$$F(z) = -\frac{\mu_0 I}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{z}{z_0}\right)^n$$

$$= -\frac{\mu_0 I}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{R_{ref}}{z_0}\right)^n \left(\frac{z}{R_{ref}}\right)^n$$

Félix Savart, French (June 30, 1791-March 16, 1841)

Jean-Baptiste Biot, French (April 21, 1774 – February 3, 1862)

FIELD HARMONICS OF A CURRENT LINE

The multipoles of a line current then scale like 1/n

- The details of the decay depend on the line current position
- Adding multiple line currents judiciously positioned can result in a multipole field of order m with fairly small multipoles n≠m

The line currents can be connected so as to create a dipole, quadrupole, etc

HOW TO GENERATE A PERFECT FIELD

Perfect dipoles

Cos theta: proof – homework from last Monday

$$j(\theta) = j_0 \cos(m\theta)$$

The vector potential reads

$$A_{z}(\rho,\phi) = \frac{\mu_{0} j}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\rho}{\rho_{0}}\right)^{n} \cos[n(\phi - \theta)]$$

and substituting one has

$$A_z(\rho,\phi) = \frac{\mu_0 j_0}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{\rho}{\rho_0}\right)^n \int_0^{2\pi} \cos(m\theta) \cos[n(\phi-\theta)] d\theta$$

using the orthogonality of Fourier series

$$A_z(\rho,\phi) = \frac{\mu_0 j_0}{2m} \left(\frac{\rho}{\rho_0}\right)^m \cos(m\theta)$$

Basic features of "sector" coils (Ezio Todesco)

 We compute the central field given by a sector dipole with uniform current density i

$$I \rightarrow j\rho d\rho d\theta$$

Taking into account of current signs

$$B_1 = -4 \frac{j\mu_0}{2\pi} \int_0^\alpha \int_r^{r+w} \frac{\cos\theta}{\rho} \rho d\rho d\theta = -\frac{2j\mu_0}{\pi} w \sin\alpha$$

This simple computation is full of consequences

- B_1 \propto current density (obvious)
- B_1 ∞ coil width w (less obvious)
- B_1 is independent of the aperture r (much less obvious)

• For a $\cos \theta$,

$$B_{1} = -4 \frac{j\mu_{0}}{2\pi} \int_{0}^{\pi/2} \int_{r}^{r+w} \frac{\cos^{2}\theta}{\rho} \rho d\rho d\theta = -\frac{j\mu_{0}}{2} w$$

SECTOR COILS FOR DIPOLES

Multipoles of a sector coil

$$C_{n} = -2 \frac{j\mu_{0}R_{ref}^{n-1}}{2\pi} \int_{-\alpha}^{\alpha} \int_{r}^{r+w} \frac{\exp(-in\theta)}{\rho^{n}} \rho d\rho d\theta = -\frac{j\mu_{0}R_{ref}^{n-1}}{\pi} \int_{-\alpha}^{\alpha} \exp(-in\theta) d\theta \int_{r}^{r+w} \rho^{1-n} d\rho$$

for n=2 one has

$$B_2 = -\frac{j\mu_0 R_{ref}}{\pi} \sin(2\alpha) \log\left(1 + \frac{w}{r}\right)$$

and for n>2

$$B_{n} = -\frac{j\mu_{0}R_{ref}^{n-1}}{\pi} \frac{2\sin(\alpha n)}{n} \frac{(r+w)^{2-n} - r^{2-n}}{2-n}$$

- Main features of these equations
 - Multipoles n are proportional to sin (n angle of the sector)
 - They can be made equal to zero!
 - Proportional to the inverse of sector distance to power n
 - High order multipoles are not affected by coil parts far from the centre

Using free parameters

First allowed multipole B₃ (sextupole)

$$B_3 = \frac{\mu_0 j R_{ref}^2}{\pi} \frac{\sin(3\alpha)}{3} \left(\frac{1}{r} - \frac{1}{r+w} \right)$$

for $\alpha = \pi/3$ (i.e. a 60° sector coil) one has $B_3 = 0$

Second allowed multipole B₅ (decapole)

$$B_5 = \frac{\mu_0 j R_{ref}^4}{\pi} \frac{\sin(5\alpha)}{5} \left(\frac{1}{r^3} - \frac{1}{(r+w)^3} \right)$$

for $\alpha=\pi/5$ (i.e. a 36° sector coil) or for $\alpha=2\pi/5$ (i.e. a 72° sector coil) one has $B_5=0$

• With one sector one cannot set to zero both multipoles ... but it can be done with more sectors!

Examples of real magnets

- Number of sectors is chosen based on:
 - Multipole content that can be tolerated
 - Fabrication issues

Tevatron main dipole location of the peak field

RHIC main dipole location of the peak field

LHC main dipole – location of the peak field

Example geometries for real superconducting accelerator magnets

Real superconducting magnets: Basic design / fabrication

Nb_∞Sn bronze-process wire

(A. Devred, [1])

Nb_sSn PIT process wire (A. Devred, [1])

Overview of Nb₃Sn coil fabrication stages

After winding

After reaction

After impregnation

Overview of accelerator dipole magnets

Design issues

- Superconducting magnets store energy in the magnetic field
 - Results in significant mechanical stresses via Lorentz forces acting on the conductors; these forces must be controlled by structures
 - Conductor stability concerns the ability of a conductor in a magnet to withstand small thermal disturbances, e.g. conductor motion or epoxy cracking, fluxoid motion, etc.
 - The stored energy can be extracted either in a controlled manner or through sudden loss of superconductivity, e.g. via an irreversible instability – a <u>quench</u>
 - In the case of a quench, the stored energy will be converted to heat; magnet protection concerns the design of the system to appropriately distribute the heat to avoid damage to the magnet

Lorentz force - Dipole magnets

- The Lorentz forces in a dipole magnet tend to push the coil
 - Towards the mid plane in the vertical-azimuthal direction (F_{ν} , F_{θ} < 0)
 - Outwards in the radial-horizontal direction $(F_{x_r}F_r > 0)$

Lorentz force - Quadrupole magnets

- The Lorentz forces in a quadrupole magnet tend to push the coil
 - Towards the mid plane in the vertical-azimuthal direction (F_{ν} , F_{θ} < 0)
 - Outwards in the radial-horizontal direction $(F_{x_r}, F_r > 0)$

Stress and strain Mechanical design principles

Displacement scaling = 50

 Usually, in a dipole or quadrupole magnet, the highest stresses are reached at the mid-plane, where all the azimuthal Lorentz forces accumulate (over a small area).

Lorentz force - Solenoids

- The Lorentz forces in a solenoid tend to push the coil
 - Outwards in the radial-direction $(F_r > 0)$
 - Towards the mid plane in the vertical direction $(F_{\nu} < 0)$

Concept of stability

- The concept of superconductor stability concerns the interplay between the following elements:
 - The addition of a (small) thermal fluctuation local in time and space
 - The heat capacities of the neighboring materials, determining the local temperature rise
 - The thermal conductivity of the materials, dictating the effective thermal response of the system
 - The critical current dependence on temperature, impacting the current flow path
 - The current path taken by the current and any additional resistive heating sources stemming from the initial disturbance

Calculation of the bifurcation point for superconductor instabilities

Heat Balance Equation in 1D, without coolant: $[W/m^3]$

Thanks to Matteo Allesandrini, Texas Center for Superconductivity, for these calculations and slides

$$\frac{d}{dx}\left(k(T)\cdot\frac{dT}{dx}\right) + \rho(T)/J^2 + Q_{initial_pulse} - C(T)_{volume} \cdot \frac{dT}{dt} = 0$$
Heat conduction

Joule effect

Quench trigger

Heat stored in the material

Example of quench initiation

Analysis of SQ02 – quench propagation

Analysis of SQ02 – quench propagation

Magnet protection

- The quench propagation aids in distributing stored energy to the rest of the magnet
- Often we accelerate the process by actively heating the magnet once a quench initiation has been detected ("Active protection")
- If possible, much of the energy is also absorbed by a dump resistor
- The energy can also be absorbed by inductive coupling to a secondary

Permeability and field-lines

Problem 1: find the functional relationship $\alpha 1$ =f($\mu 1, \mu 2, \alpha 2$). Plot the function for $\mu 1$ =1, $\mu 2$ =1 and $\mu 2$ =10

